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Abstract

We sought to develop and evaluate a composite memory score from the neuropsychological
battery used in the Alzheimer’s Disease (AD) Neuroimaging Initiative (ADNI). We used modern
psychometric approaches to analyze longitudinal Rey Auditory Verbal Learning Test (RAVLT, 2
versions), AD Assessment Schedule - Cognition (ADAS-Cog, 3 versions), Mini-Mental State
Examination (MMSE), and Logical Memory data to develop ADNI-Mem, a composite memory
score. We compared RAVLT and ADAS-Cog versions, and compared ADNI-Mem to AVLT
recall sum scores, four ADAS-Cog-derived scores, the MMSE, and the Clinical Dementia Rating
Sum of Boxes. We evaluated rates of decline in normal cognition, mild cognitive impairment
(MCI), and AD, ability to predict conversion from MCI to AD, strength of association with
selected imaging parameters, and ability to differentiate rates of decline between participants with
and without AD cerebrospinal fluid (CSF) signatures. The second version of the RAVLT was
harder than the first. The ADAS-Cog versions were of similar difficulty. ADNI-Mem was slightly
better at detecting change than total RAVLT recall scores. It was as good as or better than all of
the other scores at predicting conversion from MCI to AD. It was associated with all our selected
imaging parameters for people with MCI and AD. Participants with MCI with an AD CSF
signature had somewhat more rapid decline than did those without. This paper illustrates
appropriate methods for addressing the different versions of word lists, and demonstrates the
additional power to be gleaned with a psychometrically sound composite memory score.
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Background

Impairments in memory are a hallmark of Alzheimer’s disease (AD) and are requisite for
diagnoses of the disease (McKhann et al. 1984). Assessment of memory was a crucial
criterion influencing the composition of the neuropsychological battery used in the AD
Neuroimaging Initiative (ADNI). The battery includes a variety of indicators of memory,
including the Rey Auditory Verbal Learning Test (RAVLT) (Rey 1964), elements from the
AD Assessment Scale—Cognitive Subscale (ADAS-Cog) (Mohs et al. 1997), the recall of
three items from the Mini-Mental State Examination (MMSE) (Folstein et al. 1975), and
recall of elements from a story from Logical Memory | of the Wechsler Memory Test-
Revised (Wechsler 1987).

There are at least two reasons a memory composite score may be useful. First, summarizing
all of the memory data with a single score facilitates comparisons with other variables
without needing to address challenges raised by testing multiple hypotheses that would
ensue if each of the memory indicators was considered separately. These other variables
could be neuroimaging summaries, biomarkers, clinical diagnoses, or measures of other
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cognitive domains. Second, by including multiple indicators in a single score, the impact of
measurement error due to idiosyncratic single items or subdomains is minimized.

Different word lists for the RAVLT and ADAS-Cog were administered at different study
visits. A particular challenge that arose in these analyses was to address the two different
versions of the RAVLT word lists and the three different versions of the ADAS-Cog word
lists. It is important to determine whether these different versions of the RAVLT and
ADAS-Cog have the same difficulty level before using total scores in longitudinal analyses.
The assumption that different forms are equivalent is a strong assumption that needs to be
checked (Millsap 2011). One of our goals was to compare the difficulties of the different
versions of the RAVLT and ADAS-Cog used in ADNI.

Our primary goal was to develop and evaluate the validity of a psychometrically
sophisticated memory composite score from the ADNI neuropsychological battery. We
compared our composite memory score to a variety of other scores in a series of analyses to
address the validity and performance of our composite score. First, we determined the ability
of the composite to detect change over time in each diagnostic group. Second, we
determined the ability to predict conversion from mild cognitive impairment (MCI) to AD.
Third, we evaluated the strength of the relationship with MRI-derived parameters found in
previous studies to be related to memory, including hippocampal volume, cortical thickness
of the parahippocampal region, fusiform gyrus, and entorhinal cortex (Yonelinas et al. 2007;
Walhovd et al. 2009; Fjell et al. 2008; Murphy et al. 2010; Van Petten et al. 2004). Finally,
we compared rates of decline among people with normal cognition and with MCI who had a
pattern of cerebrospinal fluid (CSF) biomarkers consistent with early AD (an “AD
signature™) to rates of decline among people without the AD signature.

and data source

Data used in this study were obtained from the ADNI database (http://adni.loni.ucla.edu/).
The ADNI was initiated in 2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies, and non-profit organizations. The
primary goal of ADNI has been to test whether serial MRI, PET, other biological markers,
and clinical and neuropsychological assessments can be combined to measure the
progression of MCI and early AD. Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the time and cost of clinical trials. Michael
W. Weiner, MD, VA Medical Center and University of California-San Francisco is the
Principal Investigator of this initiative. This $60 million, multiyear public-private
partnership involves many co-investigators from a broad range of academic institutions and
private corporations. More than 800 participants, aged 55 to 90, have been recruited from
across more than 50 sites in the US and Canada. This includes approximately 200 patients
diagnosed with early AD who were followed for up to 2 years. Longitudinal imaging data,
including structural 1.5 Tesla MRI scans, were collected on the full sample.
Neuropsychological and clinical assessments were collected at baseline, and at follow-up
visits occurring at six- to twelve-month intervals. Further information about ADNI can be
found in (Jack et al. 2010a) and at http://www.adni-info.org. The study was conducted after
Institutional Review Board approval at each site. Written informed consent was obtained
from all study participants, or their authorized representatives.

Diagnosis of amnestic MCI required patient-reported memory complaints, objective
memory deficits, intact functional activities, a Clinical Dementia Rating (CDR) Scale
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(Morris 1993) global score of 0.5, and a MMSE (Folstein et al. 1975) score of 24 or more.
Participants with AD met the National Institute of Neurological and Communicative
Diseases and Stroke—Alzheimer’s Disease and Related Disorders Association criteria for
probable AD (McKhann et al. 1984).

Cognitive and clinical measures

Memory indicators—Considerations for compiling the ADNI neuropsychological battery
included the following: 1. Coverage of the domains of interest (memory, executive
functions, language, attention, and visuospatial abilities); 2. Adequate sampling of cognitive
domains of interest in subjects who are normal or who have MCI or AD; 3. Can measure
change over a 2-3 year period; 4. Avoid ceiling or floor effects; 5. Were efficient and met
practical demands; 6. Were utilized in the AD Clinical Study (ADCS) MCI trial and worked
well in that setting. Additionally, the tests are widely used in AD Centers (ADCs) that are
required to collect a Uniform Data Set, to reduce the amount of testing needed for
participants enrolled in ADNI from ADCs.

The RAVLT uses a 15-item list of unrelated words. This list is read to the participant, who is
asked to recall aloud as many of the words as they can. The number of successfully recalled
words is recorded. The list is then repeated, and the participant again asked to recall as many
words as they can. This process is repeated for a total of 5 learning trials, resulting in 5
scores. Then the examiner reads a new list of 15 words to the participant (an interference
word list), and the participant is asked to recall as many of these words as possible. The
participant is then asked to recall the initial word list, and the number of words recalled is
recorded. After thirty minutes of other testing, the participant is again asked to recall as
many words from the initial list as they can. The two versions of the RAVLT include
different versions of the initial and interference word lists.

The ADAS-Cog includes two different memory tasks. First is a word list learning task
similar to but distinct from that of the RAVLT. The ADAS-Cog word list includes 10
unrelated words (rather than 15) that are printed on cards. The participant is asked to read
them aloud (while in the RAVLT they are read to the participant) and to remember them.
There are three learning trials (rather than five in the RAVLT). After five minutes (rather
than 30) of unrelated testing, the participant is asked to recall as many words as possible
from the list.

The second memory task included in the ADAS-Cog is a word recognition task. In this task,
the participant is given 12 cards with words printed on them, and asked to read them aloud
and to remember them. Then the target words along with 12 distractor words are shown to
the participant, who is asked to indicate whether the word was one they were supposed to
recall. Two scores are recorded: the number of target words correctly identified as being part
of the list (i.e., true positives), and the number of distractor words correctly identified as not
being part of the list (i.e., true negatives).

The three different versions of the ADAS-Cog include different lists of the 10 words for the
list learning trial as well as different lists of the 12 words for the recognition task.

For logical memory, a brief fact-laden passage is read aloud once. The participant is asked to
recall as many of the passage’s 25 elements as they can, and the number of elements
correctly recalled is recorded. After 30-40 minutes of other cognitive testing, the participant
is again asked to recall the passage, and the number of elements correctly recalled in this
delay condition is recorded.
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In the MMSE, 3 words are read to the participant, who is asked to repeat them. Distractor
tasks are then administered, after which the participant is asked to spontaneously recall the
three words. Scores of 1 point are recorded for each item correctly recalled, and 0 for each
item not correctly recalled.

Comparitor measures—We compared our composite (described below) to a variety of
comparitors. The standard sum score for the five learning trials of the RAVLT was a
primary comparator. Others included four versions and scores for the ADAS-Cog, including
the original version (ADAS-Classic), the modified version of the ADAS-Cog that includes
delayed recall (ADAS-Modified), a Rasch score developed for the original version of the
ADAS-Cog (ADAS-Rasch (Wouters et al. 2008)), and a score obtained by recursive
partitioning of the ADAS-Cog (ADAS-Tree (Llano et al. 2011)). Other comparitors included
the total MMSE score and the sum of boxes from the CDR.

Dementia evaluation—Conversion from normal or MCI to AD was a primary outcome
for ADNI and so was tracked very closely. Complete methods for identifying dementia
cases can be found in the ADNI protocol available at the ADNI web site http://www.adni-
info.org.

Selected MRI-based imaging parameters—All participants had an MRI evaluation at
each study visit. We identified four MRI parameters a priori as being associated with
memory: hippocampal volume, thickness of the parahippocampus, thickness of the
entorhinal cortex, and thickness of the fusiform gyrus. The neuroimaging methods utilized
by ADNI have been described in detail previously (Jack et al., 2008) utilizing calibration
techniques to maintain consistent protocols across scanners and sites. Raw dicom data of
T1-weighted MP-RAGE scans acquired from 1.5 Tesla scanners at baseline visits from all
participants were obtained via the ADNI database (http://www.loni.ucla.edu/ADNI/).
Images were processed through FreeSurfer version 4.0.3, a software program freely
available at http://surfer.nmr.mgh.harvard.edu/ to obtain measurements of hippocampal
volume and cortical thickness measurements for parahippocampal, entorhinal, and fusiform
gyrus regions.

CSF—A subset of participants (/7=415) had baseline lumbar punctures for CSF, which was
evaluated for assays of amyloid ;.4 (AB), total tau, and phosphorylated tau;g;, (ptau). De

Meyer et al. used AP and ptau to classify ADNI participants as having an “AD signature” or
not (De Meyer et al. 2010), and provided us with the classes for these analyses.

Psychometric analyses of baseline data

Our initial modeling of memory focused on baseline data to determine whether a single
factor model would be appropriate or whether a more complicated model would be
necessary.

We used Mplus statistical software for all models (Muthén and Muthén 2006). Mplus
facilitates very flexible modeling but allows a maximum of 10 categories per categorical
indicator. We re-coded memory indicators to have a maximum of 10 categories. We
developed a re-coding algorithm based on preserving variability at the extremes of the
distribution at the expense of variability in the middle range of the distribution. Specific re-
coding we used is shown in Table S1.

We compared a single factor model to a bi-factor model that included additional terms to
capture covariance not due to the underlying factor defined by all of the indicators
(McDonald 1999; Reise et al. 2007). Our initial task was then to identify one or more
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specific candidate bi-factor models to compare with the single factor model. We considered
two approaches: one accounting for theoretical considerations regarding memory subtypes
assessed by each of the indicators, and the other accounting for methods effects.

For the first approach, before we looked at data we (P.K.C., A.C., and D.M.) assigned
memory indicators from the ADNI data set into categories based on the memory subtype it
assessed (“content” models). Specific subtypes we considered were list learning and
paragraph recall. For the second approach, we considered whether the same stimulus was
being assessed several times (“methods” models). For example, for the ADAS-Cog, there
were three word list learning trials and a recall trial of the same list of words, while the
recognition task was of a different list of words but had both true and false positives. We
thus modeled a secondary methods factor for the first four indicators which would capture
the facility people had with those specific words beyond their overall memory ability, and a
secondary residual correlation between the true and false positives for the recognition task,
which captures additional covariation between those indicators beyond their relationship
with overall memory.

We compared these candidate secondary domain structures on the basis of published
desirable thresholds for the fit statistics (Reeve et al. 2007). We specifically focused on the
confirmatory fit index (CFI), where values >0.95 are consistent with excellent fit; on the
Tucker-Lewis Index (TLI), where values >0.95 are consistent with excellent fit; and on the
root mean squared error of approximation (RMSEA), where values <0.08 are consistent with
adequate fit and values <0.05 are consistent with excellent fit. Based on these analyses, the
bi-factor model with methods effects was far superior to the content bi-factor model, so we
only considered the methods effects model in subsequent analyses.

Finally we compared the single factor and the methods bi-factor models. We noted the fit
indices for these two models, though fit statistics were not deciding criteria. Much more
important for our purposes was the correlation between memory factor scores from the two
models, and the scatter plot showing the relationship between these scores. We also
compared the loadings for each indicator on the overall memory factor, with and without the
secondary domain structure.

Mplus code for all of these analyses is available on request from the first author.

Psychometric analyses of longitudinal data

The task of modeling the longitudinal memory data was complicated by the multiple forms
of the ADAS-Cog word lists and the RAVLT word list. Furthermore, Logical Memory | was
only assessed at annual visits. The only indicators consistently present across visits were the
three word recall items from the MMSE. Technically these three dichotomous indicators
(i.e., correct / incorrect) could be used to anchor the scales across time points (Steven P.
Reise et al. 1993), but we were concerned that this anchoring would be too sparse for firm
conclusions to be drawn. Because of the multiple versions of the RAVLT and the ADAS-
Cog administered at different ADNI study visits, we needed to use longitudinal data to
establish our final composite scores, since we could not assume that the different versions
were of the same difficulty.

Based on results from initial cross-sectional modeling described above, we limited ourselves
to single factor models. We divided the data set into two parts: first, the annual visits
(baseline, month 12, and month 24), and second, the other visits (month 6, 18, and 36).
Logical Memory I and Il were assessed at each of the visits in the first half of the data set, so
those much richer indicators were used as anchors alongside the three dichotomous MMSE
indicators. Furthermore, at each of those visits, only the first version of the RAVLT was
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assessed, so it could also act as an anchor. The only thing that varied at those visits was thus
the three different versions of the ADAS-Cog. We fit a longitudinal model using all
available data for the annual visits of the first half of the data set. We identified the scale by
specifying the variance of the general factor to be 1 at the baseline visit, when its mean was
0. We allowed the mean and the variance of the general factor to vary at other time points,
and the general factors were freely correlated with each other. We freely estimated the
loadings on the general factor, but constrained those loadings from the same indicators to be
the same across time points. For example, for the first MMSE item, we freely estimated the
loading on the overall memory factor at each time point, but constrained that loading to be
the same at baseline, month 12, and month 24.

We captured point estimates for the loadings and thresholds for the three MMSE items,
Logical Memory I and 11, and the three versions of the ADAS-Cog from the first half of the
data set. We then turned our attention to the second half of the data set that included data
from study visits at months 6, 18, and 36. The second version of the RAVLT word list was
used at each of these study visits. We used the MMSE items, the ADAS-Cog version 2
(month 6), version 1 (month 18), and version 3 (month 36), and Logical Memory (month 36)
as anchors to estimate item parameters for the second version of the RAVLT. The
longitudinal modeling strategy was similar to that described for the first half of the data.
Because we were fixing item loadings and thresholds for the anchor items, the scale was still
anchored to the mean of 0 and variance of 1 at the baseline visit, we freely estimated the
means and variances at each of the study visits included in this second half of the data.
Script files for these analyses are available on request.

We extracted factor scores for each participant at each study visit (named ADNI-Mem in the
ADNI data set). We compared item parameters (factor loadings and category thresholds)
across the three different versions of the ADAS-Cog and the two different versions of the
RAVLT.

Mplus code for all of these analyses is available on request from the first author.

Comparisons of scores

We performed several analyses to compare our memory composite to other scores.

Rates of change—We examined the sensitivity of each measure to change over time in
each of the three diagnostic groups using z-statistics based on the coefficients and standard
errors for time from mixed models for the cognitive outcomes using random intercepts and
slopes and an unstructured covariance matrix, controlling for age, education, sex and
presence of one or more APOE &4 alleles. We used the coefficients for year and the adjusted
residual standard deviation from these models to determine sample sizes needed per group to
detect a 25 % reduction in the rate of decline in 12 months for a two-arm trial, with 80 %
power and alpha = 0.05, assuming a two-sided test.

Time to conversion for people with MCI—We compared the strength of association
between cognition and risk of developing dementia, using accelerated failure time models of
time to AD, with a Weibull distribution, controlling for age, education, sex, and presence of
one or more APOE &4 alleles. We performed two sets of analyses. First, we evaluated
baseline cognitive scores. Second, we performed a lagged analysis to compare the strength
of association between cognitive variability at each visit and risk of developing dementia at
the subsequent study visit.

Strength of association with MRI parameters—We determined the strength of
association between cognitive scores and selected MRI values from baseline in each of the
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diagnostic groups using linear regression models predicting the cognitive outcome, adjusting
for total intracranial volume, age, education, sex, and presence of one or more APOE &
alleles.

Ability to differentiate trajectories of participants with CSF AD signatures
among people with normal cognition and with MCl—We used mixed effects models
to determine the ability of each cognitive measure to differentiate the cognitive trajectories
of participants with an AD profile of CSF biomarkers compared to people without that
profile. Our rationale for limiting these analyses to participants with normal cognition and
with MCI was that people ultimately destined to develop AD should have greater rates of
decline in cognition in general and memory in particular than people not destined to develop
AD, but that the AD CSF profile might not have a relationship with subsequent trajectories
of cognition among people with established AD (Jack et al. 2010b). Analyses were
conducted within each diagnostic group with random intercepts and slopes and an
unstructured covariance matrix, controlling for age, education, sex, and presence of one or
more APOE &4 alleles.

Characteristics of participants

Of the 819 ADNI participants eligible at baseline, 803 had complete data for our cognitive
outcomes at one or more study visits. Of these, 225 had normal cognitive functioning, 394
had mild cognitive impairment (MCI), and 184 had AD. Demographic, clinical, CSF, and
imaging data for these individuals are shown in Table 1.

Cross-sectional analyses of memory indicators

We compared candidate bi-factor models as described in the Methods section. Our best-
fitting candidate model had secondary domains for methods effects, and split the RAVLT
into a learning factor (including the interference list) and a recall factor. The path diagram
for the selected bi-factor model is shown in Fig. 1. Loadings for the bi-factor model are
shown in Table 2. The first column of data shows standardized loadings for the overall
“Memory” factor. The second column of data shows loadings for the relevant subdomain.
We shaded the rows to highlight membership of particular memory indicators in particular
subdomains. Two pairs of items had residual correlations rather than underlying factors; we
show the residual correlation in one row of the table and place one or two asterisks in the
corresponding row of the partner indicator. All of the standardized factor loadings on the
overall “Memory” factor were well over 0.30, McDonald’s threshold for salience
(McDonald 1999), suggesting that all of the items—including the three dichotomous MMSE
words—are salient indicators of overall memory. For each indicator, loadings on the overall
“Memory” factor were higher than the loading on the method subdomain factor. Several of
the loadings on the method subdomain factors were below the 0.30 threshold for salience.
There was a negative correlation between the true and false positive indicators for the
ADAS-Cog recognition task. The factor loadings for these two items indicate that both true
hits and true misses are salient indicators of overall memory, and that they have a negative
residual correlation, meaning that beyond their overall relationship with memory they have a
negative relationship with each other. We suspect this reflects the effects of strategies for
guessing. If a respondent is not sure whether a candidate word was truly presented and
guesses, and has a strategy of guessing “present,” then the number of true hits will be higher
and the number of true misses will be lower; conversely, if a respondent has a strategy of
guessing “absent,” then the number of true hits will be higher and the number of true misses
will be lower. Taken together, these strategies for guessing result in a negative residual
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correlation—the parts of these scores not reflecting overall memory are negatively related to
each other.

We compared the bi-factor model described above to the single factor model that assumed
no residual relationships. The bi-factor model fit the data better than a single factor model.
For the bi-factor score, the CFI was 0.97, the TLI was 0.99, and the RMSEA was 0.086. For
the single factor model, the CFI was 0.89, the TLI was 0.97, and the RMSEA was 0.179.

Category thresholds are determined from the proportions of people responding in each
category, and threshold values for all indicators are identical for the single and bi-factor
models; the only difference between the models was to be found in the factor loadings. We
show a comparison of the factor loadings in Table 3. As expected, most loadings on the
general factor were somewhat attenuated in the bi-factor model compared to the single
factor model, since some of the covariation assumed to be related to the general factor in the
single factor model was modeled in secondary domains and residual correlations in the bi-
factor model. The largest absolute difference was for Trial 1 of the RAVLT, which had
loadings of 0.62 in the single factor model and 0.55 in the bi-factor model, a difference of
0.07, or 11 % of the single factor loading. None of the other indicators had differences as
large as 10 %. As expected, when ignoring the negative residual correlation between the
recognition tasks for the ADAS-Cog, the loadings on the primary factor were somewhat
smaller. Differences in loadings for those two indicators were small between the single
factor and the bi-factor model, and loadings on the overall factor were still over the 0.30
threshold for salience.

The overall correlation between single-factor and bi-factor scores for memory at the baseline
exam was 0.99. The correlation for participants with AD was 0.98; for participants with

MCI it was 0.99; for participants with normal cognition it was 0.98. A scatter plot did not
suggest any systematic differences from the diagonal (Figure S1).

These results suggested that a single-factor model was appropriate for our purposes, as there
was negligible difference between single-factor and bi-factor scores.

Version effects for the RAVLT and the ADAS-Cog

The loadings for each of the indicators from the two versions of the RAVLT were very
similar (Table S2); as a proportion, they ranged from 5 % smaller to 3 % larger between the
two versions. The difficulty levels for the category thresholds, however, displayed important
differences between the two versions, as shown in Fig. 2. The values for the thresholds
between item categories are plotted on the Y axis. Version 1 thresholds are shown in blue
circles, while version 2 thresholds are shown in green diamonds. For all of the trials with the
exception of List B (the distractor list), the Version 2 list is more difficult (has higher
thresholds) than the Version 1 list. As expected, recall is more difficult than recognition (see
two right-most sets of thresholds). These differences in difficulty thresholds mean RAVLT
total scores for any person with high memory ability levels would be expected to differ by 5
or 6 points entirely as a function of which version of the test was used. For people with
lower memory ability levels, expected differences in RAVLT total scores are smaller, but
the expected difference would still be 2 or 3 points entirely as a function of which version of
the test was used.

The ADAS-Cog versions were more similar to each other, at least in terms of category
thresholds (see Fig. 3). Version 1 had a greater spread of thresholds than Version 2 and to a
lesser extent than Version 3, which means that it should be somewhat better able to
differentiate among people at the extremes of memory ability with fewer ceiling or floor
scores. The loadings for the learning trials and recall of the three versions of the ADAS-Cog
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list learning task were very similar to each other, with differences ranging from 4 percent
lower to 2 percent higher (Table S3). The recognition present and recognition absent tasks
had somewhat dissimilar loadings. In no case were these strong indicators of overall
memory (standardized loadings ranged from 0.43 to 0.56, roughly half the magnitude of
loadings for the list learning indicators). The largest overall difference in loading between
versions was 0.13 for recognition correct between Version A and Version C, which in terms
of percentage was a 30 % difference in loadings.

Comparison of the ADNI-Mem to other measures

Table 4 shows the standardized coefficients for change over time for our ADNI-Mem
composite score and for the comparison measures. The table highlights the two tests of
memory (ADNI-Mem and the RAVLT) in the top section, and proceeds to address tests of
global cognition (several scores derived from the ADAS-Cog and the MMSE) and a global
clinical measure (the CDR sum of boxes). There is not much change that occurs over the
course of two years for ADNI participants with normal cognition. This is reflected in the
small standardized coefficients for all of the measures. Indeed, on average, ADNI-Mem and
two of the global ADAS-Cog scores indicate very modest improvement in cognition over
two years (positive coefficients). Among people with MCI, ADNI-Mem performed
somewhat better than the RAVLT sum score, and nearly as well as the global ADAS-Cog
scores or the clinical CDR sum of boxes. Among people with AD, all of the scores are able
to detect robust changes over time, and ADNI-Mem performed somewhat better than the
RAVLT total score.

Table 5 shows results for the ability of the scores to predict conversion to dementia. Results
appeared similar for all of the scores, though time ratios (the equivalent of hazard ratios had
we used Cox models) for ADNI-Mem were either the best or second best among all of the
measures assessed.

Table 6 shows results for the cross-sectional association of each score with four
neuroimaging parameters from MRI. Findings among people with normal cognition are
difficult to understand, as there is a statistically significant inverse relationship between
fusiform thickness and our ADNI-Mem composite score. This inverse relationship was also
present for the RAVLT total score. For people with MCI, there were strong associations in
the expected direction between ADNI-Mem and all four neuroimaging markers, suggesting
that poorer memory performance was associated with smaller hippocampal volumes and
with thinner cortex in the parahippocampal, fusiform, and entorhinal regions. Further, in
each case the strength of association for these imaging findings was somewhat stronger than
that for the total RAVLT score, and comparable to that of the various versions of the ADAS-
Cog. Among people with AD, there was again a strong association between ADNI-Mem and
each of the imaging parameters, and the strength of this association was somewhat stronger
in each case than that for the RAVLT total score.

Table 7 shows results for the differences in intercept and rates of decline associated with
having an AD CSF signature for people with normal cognition and MCI. Among people
with normal cognition, there was little difference in trajectories associated with having the
AD CSF signature, though there were differences in trajectories for the modified ADAS-
Cog and the CDR sum of boxes in the hypothesized direction (i.e., people with the AD CSF
signature had faster rates of decline). Among people with MCI, all of the measures
considered suggested faster rates of decline among people with the AD CSF signature. This
difference was largest for ADNI-Mem.
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Discussion

In this paper we present methods we used to derive a memory composite from the
neuropsychological battery administered in ADNI. We found a single factor model to be
quite acceptable for the memory indicators from this battery. Our composite addresses an
under-appreciated challenge in these data, which is that the study administered three
different versions of the ADAS-Cog word lists and two different versions of the RAVLT
word lists. We found that the ADAS-Cog item thresholds were similar across versions,
though the relative importance of the recognition tasks varied somewhat. For the RAVLT,
on the other hand, we found an important difference in difficulty levels, as the second
version of RAVLT was systematically more difficult than the first version. Failing to
account for these differences in difficulty levels could result in strange results if standard
sum scores are used. Our memory composite performed well in comparison to other
cognitive measures. It was able to detect change over time well among people with MCI and
AD. It was a strong predictor of conversion from MCI to AD. It was strongly associated
with a priori specified neuroimaging parameters selected on the basis of their known
association with memory performance. It was able to detect differences in changes over time
for people with MCI who had CSF biomarkers suggesting an AD signature.

These results suggest that the two RAVLT word lists used in ADNI are not equivalent to
each other (list 2 is systematically harder than list 1). If standard total scores are used, this
may result in artifactual saw-tooth patterns in plots of performance over time, since people
with no change in actual memory performance would be expected to have higher scores /
lower scores / higher scores / lower scores at alternating visits. Because of the design of the
study, participants with AD did not have an 18-month study visit, so their four observations
would have the pattern higher scores / lower scores / higher scores / higher scores. The
scoring approach adopted for ADNI-Mem accounts for the different difficulty levels of the
two versions of the RAVLT. We did not account for different versions of the RAVLT when
using changes in the RAVLT in analyses; we are not familiar with traditional methods for
doing so, and to our knowledge different version effects have not been considered in
publications that have analyzed ADNI RAVLT data.

The three versions of the ADAS-Cog were much more similar to each other than were the
two versions of the RAVLT to each other. Nevertheless, there were differences in the
relative importance of the recognition tasks across the different versions of the ADAS-Cog.
Attention could be paid to the relative importance of these recognition tasks in the different
versions of the ADAS-Cog, especially if the scoring to be applied to these versions does not
account for this.

The ADNI-Mem composite score has several desirable features. It appears to have good
validity, as it performed as well or better than the RAVLT in each of the analyses
performed. Unlike the standard sum scores used for the RAVLT, however, ADNI-Mem
accounts for the different versions of the RAVLT and the ADAS-Cog. ADNI-Mem also
includes additional information from logical memory and from the MMSE, incorporating all
of the memory-related information available from the neuropsychological battery
administered in ADNI. Basing inferences on a multiple indicator composite rather than
single measures conserves statistical power by reducing the number of potential
comparisons, and may reduce measurement error. It uses a sophisticated modern
psychometric approach that is based entirely on inter-relationships among items rather than
external criteria such as those used in the recursive partitioning approach that generated the
ADAS-Tree scores. The modern psychometric approach used to generate the ADNI-Mem
scores has linear scaling properties that are appropriate for tracking changes over time
(Crane et al. 2008; Mungas and Reed 2000).
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The rationale for using the ADNI-Mem score in analyses of ADNI data is thus multifaceted.
From a theory perspective, it has many desirable properties. These include incorporating all
memory indicators, thus maximizing measurement precision of the memory level underlying
responses to memory items; it has linear scaling properties that are especially important in
longitudinal analyses; and it accounts for version effects in the RAVLT and ADAS-Cog.
From a data-driven perspective, it also has desirable properties: it appears to be at least as
valid as its constituent parts, and did well in predicting people who would progress from
MCI to AD and in detecting changes over time. We have submitted our ADNI-Mem scores
to the ADNI data base and recommend their use by any researcher using the ADNI data set
who has substantive questions about memory. Specifically, the ADNI-Mem scores may be
particularly useful for imaging researchers who wish to compare image processing and
analysis techniques in terms of the strength of associations between imaging and memory.

Limitations should be considered in interpreting our results. We were limited by the battery
of tests administered by ADNI. We suspect—but cannot confirm—that similar findings
would have been obtained had other tests been used. Although the ADNI battery is fairly
rich in its assessment of memory, the advantages of a composite score approach would
presumably be even more apparent if even more tests were available. We did not compare
the ADNI neuropsychological battery to any other battery of tests, and cannot comment on
whether it may be superior to other batteries used clinically or in other research studies. The
ADNI data set includes rich neuroimaging results available from study participants, making
it an ideal setting for our analyses comparing various scores to imaging findings. We
selected four specific measures a priori. Had we selected different measures we could have
found different findings. Similarly, there are a variety of ways of estimating hippocampal
volume. We relied on one particular technique. Only a subset of the ADNI sample had CSF
measures. Our findings would have been more robust had our sample sizes for the CSF
analyses been larger.

In conclusion, this paper outlines the methods for developing the ADNI-Mem composite
measure of memory for the ADNI study, and compares it to several other cognitive tests. We
also found that the two versions of the RAVLT are of very different difficulty levels, a fact
that is accounted for in the composite ADNI-Mem scores. The ADNI-Mem scores should be
used when a single indicator of memory performance is desired. We have supplied these
scores so that they are available in the ADNI data set.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Bi-factor model path diagram for baseline data. RAVLT=Rey Auditory Verbal Learning
Test. ADAS=Alzheimer’s Disease Assessment Schedule. MMSE=Mini-Mental State
Examination. Covariation across all the indicators is modeled with loadings on the primary
“Memory” factor shown to the right. Shared covariation beyond that shared with all of the
items is shown in secondary factors (for three or more indicators) and residual correlations
(for two indicators, shown as two-headed curved arrows) to the left. For example, shared
covariation for the 6 word list learning trials for the RAVLT (five with list A, one with list
B) beyond that shared with all the other indicators is modeled with the “RAVLT Learning”
factor. We specified a unit variance for each of the factors, and they were mutually
uncorrelated with each other
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Fig. 2.

Difficulty levels for the elements of the two versions of the Rey Auditory Verbal Learning
Test. The five learning trials are indicated by the numbers 1 through 5; the interference trial
by the letter B, the first recall trial by the number 6; delayed recall by “Recall”, and the
recognition task by “Recognition”. Version A difficulty thresholds are denoted with blue
circles, while version B difficulty thresholds are denoted with green diamonds. In this plot,
the difficulty levels are plotted on the y axis in z-statistic units; higher numbers indicate
higher memory ability / higher item difficulty. Considering the two versions of learning trial
1, version A is easier for each threshold. At an overall memory ability level of —0.5, for
example, higher proportions of people will be above the first threshold for version A, and
lower proportions of people above that same threshold for version B. At every threshold the
green diamonds are higher than the blue dots. For the second through 5™ learning trials, this
difference is dramatic at the top end, as the top threshold on version A is only as difficult as
the 2"d to highest threshold on version B
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Difficulty levels for the elements of the three versions of the Alzheimer’s Disease

Assessment Scale — Cognitive Subscale. Recog=Recognition. Version A threshold difficulty
levels are depicted with blue circles, Version B with green diamonds, and Version C with
red triangles. In this plot, the difficulty levels are plotted on the y axis in z-statistic units;
higher numbers indicate higher memory ability / higher item difficulty Version A has greater
spread than Version B and to a lesser extent than version C, meaning it will have slightly
smaller ceiling and floor effects. Unlike the Rey, no version appears to be consistently easier

or harder than the other versions
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Demographic, clinical, CSF and MRI data by baseline diagnosis (#7=803 with complete cognitive data)

Table 1

Normal cognition

Mild cognitive impairment (MCI)

Alzheimer’s disease (AD)

Sample size, N
Baseline
6 months
12 months
18 months
24 months
36 months
Demographics
Female
Age (years), mean (SD)
Education (years), mean (SD)
Any APOE ¢4 alleles
Baseline clinical data: mean (SD)
Memory
ADNI-Mem
RAVLT Trials 1-5 sum
Global Cognition
ADAS-Classic (70 pts)
ADAS-Total (85 pts)
ADAS-Rasch
ADAS-Tree
MMSE
Clinical Rating
CDR-SB
Baseline CSF data
CSF data, N
de Meyer AD cluster, %
Baseline MRI data: mean (SD)
Hippocampus volume, cm3
Entorhinal thickness, mm
Fusiform thickness, mm
Parahippocampal thickness, mm

Complete data for MRI, N

225
215
202

193
164

48 %
76.0 (5.0)
16.0 (2.8)
26 %

1.0 (0.5)
433(9.1)

6.2(2.9)
9.4(42)
48(35)
7.9(35)
29.1 (1.0)

0.0 (0.1)

112
35%

6.7 (0.8)
35(0.3)
26(02)
26(03)
185

394
371
351
316
289
209

35%
74.9 (1.5)
15.7 (3.0)
53 %

-0.1(0.6)
30.8 (9.0)

11.5 (4.4)
18.6 (6.3)
11.8 (5.5)
15.9 (5.1)
27.0 (1.8)

1.6 (0.9)

193
73%

5.8 (1.0)
3.1(05)
25(02)
2.4(03)
305

184
171
149

115

49 %
75.5 (7.4)
14.7 (3.1)
65 %

-0.8 (0.5)
23.3(7.5)

18.5 (6.3)
28.8 (7.7)
19.5 (7.4)
24.2 (5.6)
23.4 (2.0)

43(L7)

97
90 %

5.2 (1.0)
2.7(05)
23(03)
23(03)
118

Page 18

Abbreviations: ADAS: Alzheimer’s Disease Assessment Schedule; CDR-SB: Clinical Dementia Rating Scale—Sum of Boxes; CSF: Cerebrospinal
fluid; mm: millimeter; MMSE: Mini-Mental State Examination; MRI: Magnetic resonance imaging; RAVLT: Rey Auditory Verbal Learning Test;

SD: Standard deviation
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Factor loadings for the primary and secondary factors for the bi-factor model from baseline

Loading on Loading on secondary factor or residual Name of secondary

primary factor correlation domain
RAVLT trial 1 0.55 0.49 RAVLT Learning
RAVLT trial 2 0.75 0.48
RAVLT trial 3 0.84 0.35
RAVLT trial 4 0.89 0.27
RAVLT trial 5 0.91 0.20
RAVLT interference trial 0.58 0.23
RAVLT immediate recall 0.85 0.28 RAVLT Recall
RAVLT 30 minute delay 0.71 0.41
RAVLT recognition 0.88 0.24
ADAS trial 1 0.76 0.38 ADAS List
ADAS trial 2 0.81 0.47
ADAS trial 3 0.80 0.38
ADAS recall 0.88 0.17
ADAS recognition present 0.41 -0.33 ADAS Recognition
ADAS recognition absent 0.50 *
MMSE ball 0.60 0.48 MMSE Words
MMSE flag 0.67 0.52
MMSE tree 0.63 0.52
Logical Memory Immediate 0.78 0.24 Logical Memory
Logical Memory Delay 0.80 kil

*and ** indicate residual correlations.

Abbreviations: ADAS: Alzheimer’s Disease Assessment Schedule; MMSE: Mini-Mental State Examination; RAVLT: Rey Auditory Verbal

Learning Test
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Table 3

Factor loadings on the general (overall memory) factor for the single factor and bi-factor models

Indicator Loading for single Loading for bi-factor Absolute difference Difference as percent of

factor model model single factor loading
RAVLT trial 1 0.62 0.55 0.07 11%
RAVLT trial 2 0.82 0.75 0.06 8 %
RAVLT trial 3 0.88 0.84 0.04 4%
RAVLT trial 4 0.92 0.89 0.02 2%
RAVLT trial 5 0.92 0.91 0.01 1%
RAVLT interference trial 0.60 0.58 0.02 3%
RAVLT immediate recall 0.87 0.85 0.01 2%
RAVLT 30 minute delay 0.71 0.71 0.00 0%
RAVLT recognition 0.90 0.88 0.01 2%
ADAS trial 1 0.79 0.76 0.03 4%
ADAS trial 2 0.86 0.81 0.05 6 %
ADAS trial 3 0.84 0.80 0.03 4%
ADAS recall 0.87 0.88 -0.01 -1%
ADAS recognition present 0.39 0.41 -0.03 -6 %
ADAS recognition absent 0.48 0.50 -0.03 -5%
MMSE ball 0.60 0.60 0.01 1%
MMSE flag 0.67 0.67 0.00 0%
MMSE tree 0.63 0.63 0.01 1%
Logical Memory Immediate 0.83 0.78 0.06 7%
Logical Memory Delay 0.85 0.80 0.05 6 %

Abbreviations: ADAS: Alzheimer’s Disease Assessment Schedule. MMSE: Mini-Mental State Examination. RAVLT: Rey Auditory Verbal
Learning Test
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Table 5

Time ratios (TR), with 95 % confidence intervals (ClI), for predicting conversion to dementia, controlling for
age, education, gender and presence of one or more APOE &4 alleles. ADAS and CDR-SB scores reversed so
that higher scores represent better cognition for all clinical measures ™

Clinical predictor Previous visit Time Ratio (95 % CI)  Baseline Time Ratio (95 % CI)

Memory

1duasnue Joyiny vd-HIN

ADNI-Mem

RAVLT Trials 1-5 sum

Global cognition

ADAS-Classic (70 pts)
ADAS-Total (85 pts)

ADAS-Rasch
ADAS-Tree
MMSE
Clinical Rating
CDR-SB

1.50 (1.32, 1.70)
1.40 (1.24, 1.57)

1.36 (1.23, 1.51)
1.45 (1.29, 1.63)
1.25 (1.14, 1.38)
1.48 (1.31, 1.67)
1.23 (1.13, 1.34)

1.49 (1.29, 1.71)

1.53 (1.34, 1.74)
1.37 (1.2, 1.54)

1.42 (1.25, 1.61)
1.50 (1.31, 1.71)
1.37 (1.22, 1.55)
154 (1.35, 1.77)
1.36 (1.15, 1.61)

1.46 (1.24,1.73)

1duasnuey Joyiny vd-HIN

wduosnue Joyiny vd-HIN

*
We used an accelerated hazard model with a Weibull distribution to account for interval censoring in the data. Adjusted time ratios greater than
one indicate a longer time until progression to dementia.

Abbreviations: ADAS: Alzheimer’s Disease Assessment Schedule. ADNI-Mem: Alzheimer’s Disease Neuroimaging Initiative Memory Score.
CDR-SB: Clinical Dementia Rating Scale—Sum of Boxes. MMSE: Mini-Mental State Examination. RAVLT: Rey Auditory Verbal Learning Test.
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Page 23

Coefficients for MRI thickness measures from regression models for the cognitive measure controlling for
age, education, gender, presence of one or more APOE &4 alleles, and intracranial volume. Bolded coefficients
indicate p-values < 0.05. ADAS and CDR-SB scores reversed so that higher scores represent better cognition

for all clinical measures

Clinical outcome

Hippocampal volume

Parahippocampal thickness

Entorhinal thickness

Fusiform thickness

Normal Cognition
Memory
ADNI-Mem
RAVLT Trials 1-5 sum
Global Cognition
ADAS-Classic (70 pts)
ADAS-Total (85 pts)
ADAS-Rasch
ADAS-Tree
MMSE
Clinical Rating
CDR-SB
Mild Cognitive Impairment
Memory
ADNI-Mem
RAVLT Trials 1-5 sum
Global Cognition
ADAS-Classic (70 pts)
ADAS-Total (85 pts)
ADAS-Rasch
ADAS-Tree
MMSE
Clinical Rating
CDR-SB
Alzheimer’s Disease
Memory
ADNI-Mem
RAVLT Trials 1-5 sum
Global Cognition
ADAS-Classic (70 pts)
ADAS-Total (85 pts)
ADAS-Rasch
ADAS-Tree
MMSE
Clinical Rating
CDR-SB

0.27
0.65

1.03
0.36
0.16
-0.26
-0.16

-0.32

6.72
4.23

6.32
7.16
5.63
7.79
2.86

331
2.04

2.50
2.67
1.59
3.28
3.01

0.55
0.58

1.30
1.23
1.33
0.76
1.30

3.02
2.51

1.63
1.84
1.76
2.10
1.10

2.09
111

1.73
2.13
0.86
2.48
0.98

-0.91
-0.91

0.27
-0.12
0.28
-0.39
0.28

7.59
4.95

7.68
8.34
5.47
8.21
2.80

3.33
2.02

4.60
4.67
3.17
452
3.38

-1.98
-2.02

-0.17
-0.90
-0.52
-1.44

0.10

121

4.75
3.95

4.46
4.72
4.90
4.59
3.27

2.80

2.26
1.46

3.20
3.38
3.05
3.13
2.99

0.97
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Abbreviations: ADAS: Alzheimer’s Disease Assessment Schedule. ADNI-Mem: Alzheimer’s Disease Neuroimaging Initiative Memory Score.
CDR-SB: Clinical Dementia Rating Scale—Sum of Boxes. MMSE: Mini-Mental State Examination. RAVLT: Rey Auditory Verbal Learning Test
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Z-scores for the slope and intercept of CSF-based AD signature group from mixed models for change in the
cognitive outcomes, controlling for age, education, sex and presence of one or more APOE & alleles. Bolded
coefficients indicate p-values < 0.05. ADAS and CDR-SB scores reversed so that higher scores represent
better cognition for all clinical measures

Clinical outcome NC MCI

Intercept  Slope Intercept Slope
Memory
ADNI-Mem 0.04 0.00 -3.20 -5.19
RAVLT Trials 1-5 sum -0.07 0.54 -2.84 -3.60
Global Cognition
ADAS-Classic (70 pts) -0.65 -1.96 -1.97 -4.39
ADAS-Total (85 pts) -046 -2.08 -309 -464
ADAS-Rasch -0.23 -171 -2.18 -4.40
ADAS-Tree -0.26 -1.68 -3.62 -4.74
MMSE 0.47 -0.53 -1.86 -4.48
Clinical Rating
CDR-SB 0.83 -255 -1.80 -5.14

Abbreviations: AD: Alzheimer’s disease. ADNI-Mem: Alzheimer’s Disease Neuroimaging Initiative Memory Score. ADAS: Alzheimer’s Disease
Assessment Schedule. CDR-SB: Clinical Dementia Rating Scale—Sum of Boxes. CSF: Cerebrospinal fluid. MCI: Mild cognitive impairment.

MMSE: Mini-Mental State Examination. NC: Normal cognition. RAVLT: Rey Auditory Verbal Learning Test.
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